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Abstract 

A multislice theory is proposed to solve Yoshioka's 
coupling equations for elastic and inelastic scattered 
high-energy electrons in a solid. This method is cap- 
able, in principle, of including the non-periodic crys- 
tal structures and the electron multiple scattering 
among all the excited states in the calculations. It is 
proved that the proposed theory for calculating the 
energy-filtered inelastic images [Wang (1989). Acta 
Cryst. A45, 193-199], based on the physical optics 
approach, is equivalent to the quantum-mechanical 
theory under some approximations. The basic theory 
of simulating the energy-filtered inelastic image of 
core-shell losses and thermal diffuse scattering is 
outlined. 

I. Introduction 

Electron inelastic scattering, as a general phen- 
omenon in high-energy electron diffraction, has been 
widely used in investigating the structures of 
materials. The early theory of simulating inelastic 
waves was due to Yoshioka (1957). Based on quan- 
tum-mechanical theory, he derived a set of coupled 
Schr6dinger equations by considering the transitions 
between the ground state and the excited states of 
the crystal. Because of the complicated coupling 
between those equations, a proper method has not 
been established to solve all the inelastic components. 
Some work has been done to consider the effect of 
inelastic scattering on elastic scattering in a first-order 
approximation. Besides the crystal potential due to 
the atomic arrangement, Yoshioka (1957) predicted 
that there will be a real addition to the crystal potential 
from virtual inelastic scattering as well as the 
imaginary absorption correction. The corrections due 
to single-electron inelastic scattering were calculated 
using the Thomas-Fermi atomic model (Yoshioka, 
1957) and atomic wave functions (Whelan, 1965a). 
This correction has also been calculated by 
Humphreys & Hirsch (1968) for different inelastic 
excitation processes. The contribution due to plasmon 
scattering was studied by Radi (1970) and Yoshioka 
& Kainuma (1962). 

All the above work was carried out for the purpose 
of considering the effect of inelastic scattering on 
electron elastic scattering. An attempt to solve the 
inelastic waves from Yoshioka's coupling equations 
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was made by Howie (1963). Based on the Bloch-wave 
approach under small-angle approximation, he gave 
some analytical solutions for phonon excitations 
under some simplified conditions. By neglecting the 
joint transitions among the excited states, this Bloch- 
wave approach was extensively developed by Rez, 
Humphreys & Whelan (1977), and Rez (1983). 
Serneels, Haentjens & Gevers (1980) have proposed 
an iteration method for solving Yoshioka's coupling 
equations, which assumes a periodic structure of the 
crystal. So far, there is no method available which 
can solve Yoshioka's coupling equations for a general 
solid structure considering all possible transitions. 

The multislice theory, developed by Cowley & 
Moodie (1957), has been successfully applied in 
image simulation for high-energy electrons in crystals 
with defects. It has been shown that this approach 
is equivalent to the quantum-mechanical theory 
(Goodman & Moodie, 1974; Ishizuka & Uyeda, 
1977). In other words, the multislice theory is a 
method of solving the Schr/Sdinger equation for high- 
energy electrons under some approximations. In this 
paper, we start from the integral forms of Yoshioka's 
coupling equations to derive their solutions in the 
scheme of multislice theory. The final solutions con- 
tain the multiple elastic and inelastic excitations in a 
solid. Some solutions of the first-order approximation 
will be examined and compared with the early theory 
developed for calculating the energy-filtered inelastic 
images in electron microscopy (Wang, 1989a). The 
detailed theories of calculating energy-filtered inelas- 
tic core-shell images and thermal diffuse scattering 
will be outlined. 

2. The general solution of Yoshioka's coupling 
equations using the muitislice method 

First, one follows Yoshioka's method for deriving the 
coupling equations. Consider the interaction of an 
incident electron with a solid. The Schr/Sdinger 
equation of the system is 

- V2+Hc+H ' qb = E~, (1) 
2mo 

where -(hE/2mo)V 2 is the kinetic energy of the elec- 
tron, Hc is the crystal Hamiltonian and H'  describes 
the interaction between the electron and the solid. 
• (r, r t , . . . ,  rM) is the wave function of the system, 
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which depends on r, the coordinates of the incident 
electron, and on r , , . . . ,  rM, the coordinates of the 
electrons and ions of the crystal. Neglecting exchange 
effects one can write 

q ) ( r , r , , . . . , r M ) = Y ~  a , , ( r l , . . . , r ~ ) g t n ( r ) ,  (2) 
rl 

where a, is the wave function of the crystal in its nth 
excited state of energy e, so that 

H c a n =  e .an .  (3) 

gto in (2) describes the elastic scattered wave of 
energy E0 = E, and g t  describes the inelastically scat- 
tered wave of energy E n = E - e n ,  with n =  
1, 2 , . . . ,  m. Substituting (2) and (3) into (1), multiply- 
ing by a*, and integrating over the coordinates 
rl,  • • • ,  rM, one obtains 

(V2 + k2) X/to = ~ ( 2 m o / h 2 ) H ~ ) m ( r ) r f f m ,  (4a)  
m 

(V2+ k 2 ) ~ .  = ~  ( 2 m o / h E ) H ' m ( r ) ~ m ,  (4b) 
m 

where 

and 

k 2 = (2mo/h2)E,, (4c) 

H ' , ,  = ~ a*  H '  am d r , ,  . . . , drM. (4d) 

These are Yoshioka's coupling equations for inelastic 
scattering. Our goal is to find the multislice solution 
of these equations. For convenience of calculation, 
we write (4a) and (4b) in matrix form, 

V2 ~:t 

k'emJ I k:)mJ 

2m°/H~° H~, ... H! J[~ml~, 

H "  o H ' ,  . . .  H m 

Equation (5) is an inhomogeneous equation. The H '  
matrix is an m x m transition matrix. By defining 
g t . = e x p ( i k . . r ) ~ 0 . ,  using the Green function 
method and assuming e. ~ Eo, (5) can be written in 
the form of (6) (see Appendix A): 

[ ~oo(r) ] 

• 47rh 2 dr  

L~.,'(r)d 
-F(r-r', i%) 0 ... 0 ] 

1 
0 F(r-r', kl) ... 0 

0 0 ... F(r- r', k,,) 

[H~o(r') H~a(r') ... H~m(r')][~o(r') 
x [ H;o(r') H;,.(r') H~ .~(r') ] [ c p t , r ' ) .  

LH'o(r') H't(r') H'm(r')lLtp..(r') 

(6a) 

where F is defined as 

F ( r - r ' ,  kn) = e x p  {i[k, ,  r - r '  - k , .  ( r -  r')]} 
r _ r ,  I (6b) 

and ! is a matrix defined as 

[i] I = . (6c) 

This expression is valid when the high-energy electron 
scattering satisfies the following conditions: 

(1) a2.~ 1, a is the scattering angle. 
(2) r - r '  ~ - - z - z ' .  

Thus 

k I-b-b - b'12 
k~ l r - r '  - k . .  ( r - r ' )  = . 2 ( z -  z')" 

Here b = (x, y) and b '=  (x', y'). 
Following the method introduced by Ishizuka & 

Uyeda (1977), one finds that (6a) becomes 

[ ~oo(b , z) ] 

+ i 

L,p,. (b, z)J 

. 

F H~o(b', z') 
×/t-/;o(.b',. z') 

LH'o(b', z') 

z -  z') 0 ... 0 ] 

l P l ( b - b ' , z - z ' )  . . .  0 
• . . 

0 . . .  P , , ( b - b ' , z - z ' )  

z , , , 'o . ,b  z ,lr o,b z , 1 
 ,bz, z,/ bdz ' 

H ' l ( b ' ,  z ')  H ' m ( b ' ,  z ' ) JL~m(b ' ,  z ' ) j  

(7a) 
where P, is defined as a propagation function, 

P , ( b , z ) = ( 1 / i A z ) e x p ( i k ,  b 2 / 2 z ) .  (7b) 

Here A is the wavelength of the electron and v is its 
velocity. 

~)0(b,z0) 01 (b,z0) Om(b,z0) 

IL 
%(b,z) 01(b.z) 

l 
t~m(b,z) 

z = z 0  

z - -z  

Fig. 1. A schematic diagram illustrating the waves before and after 
transmission through a crystal slice. 
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Equation (7a) is an integral equation. In order to 
find the multislice solution of this equation, we need 
to derive the relationship between the waves, 
~p,(b, Zo), going into a crystal slice, with thickness 
(z-Zo),  and those, ~,(b, z), after being scattered by 
the crystal slice, as shown in Fig. 1. Now let us 
consider the nth row of (7a): 

7.'=7. 

q~.(b,z)=l+(-i/hv) I~ P . (b-b ' , z - z ' )  
z" = - - oo  

x E H~,m(b', z')q~,.(b', z') db' dz' 
m 

7."= Zo ~ Z If)  =l+( - i /hv )  ~I P,,(b-b",z 
z " =  - - o o  

x ~ / 4 '  (h" z") z") db" dz" -~ nm,,~ , q~m (b",  
m 

7. '=z  

+(-i /hv)  ~ P . (b-b ' , z - z ' )  
7.' = z o 

x ~ H'~(b' ,  z')~pm (b', z') db' dz'. (8) 
m 

We use the following properties (Ishizuka & Uyeda, 
1977): 

j" P,(b, z) d b =  1; (9a) 

P.(b-b ' , z - z ' )  

=J P.(b-b",z-z")Pn(b"-b,z"-z')db". (9b) 

Z is a plane positioned at z" between z and z'. Then 
(8) can be rewritten as 

7." = 7.0 

q~,,(b,z)=~[l+(-i/fiv) I~ P,,(bo-b",Zo-Z") 
7."= --oo 

× ~ H'. ,(b",  z")~pm(b", z") db" dz" 
m 

x P . ( b -  bo, z -  Zo)] dbo 
z ' = z  

+(-i/hv) II P.(b-b',z-z') 
z'=7. 0 

x ~, H',(b', z')~pm(b', z') db' dz'. (10) 
m 

Comparing the first term in (10) with (8) for z = Zo, 
we can write 

¢.(b, z) = J P , ( b -  bo, z -  Zo)9.(bo, Zo) dbo 
z ' =  7. 

+(-i /hv)  I~ P . (b-b ' , z - z ' )  
z" = z 0 

× E H'm(b', z')~pm (b', z') db' dz'. (11) 
m 

In order to solve (11), one expands ~p, in powers of 
(- i /hv)  (Ishizuka & Uyeda, 1977): 

q~,(b, z) = ~ (-i/hv)Lfk")(b, z). (12) 
L=O 

We put (12) into (11), and by equating the coefficients 
of (- i /hv)  L, we get 

fo~")(b, z) = ~ P,,(b-bo, z-zo)~p,,(bo, zo)dbo (13a) 
z ' = z  

f[")(b, z)= ~J P,,(b-b', z- z') 
z '  = z 0 

t , .,,~ £ ( m ) / k t  x)-'. H,m(b,  ~ j./z.-~,,, z') db' dz'. (13b) 
t t l  

If H'm varies slowly in the region of Az = (z - Zo) and 
also /Co = k,, then the solution of (13) can be proved 
as (see Appendix B) 

[ f~)(b, z) 1 
fr)(b,  z) [  

f~"'ib, z)..l 
[ [Po b-bo, o ... 0 ] 

1 1" Pl(b-bo, Az) 0 
= L~J dbol • . ";" . 

0 0 ... P,.(b-'bo, Az) 

r, o,bo . . .  ] 

Lh',o(bo, Az) h ' , (bo,  Az) h', ,(bo, Az)d L~m(~, zo)d 

(14) 
where h' is defined as 

h'm = i H'm(b,z')dz'. (15a) 
7. 0 

Equation (15a) can be written in the form of (15b) 
for (z - Zo) ~ 0: 

! h',,, "- H,,,,,(b, z) Az. (15b) 

Combining (14) and (12), one gets the result 

[  o(b, z)1 

e,.(b, z/] 

I 0 Pl(b-bo, Az) . . .  0 
= db o . . . .  

0 0 ... P,,(b-'bo, Az) 

hoo(bo,Az) ho,(bo, Az) ... hom(bo, A z ) 1 1  

h'w(bo, Az) h't~(bo, Az) h;m(bo, Az) xexp . . . 

.h'o(bo, Az) h',nt(bo, Az) h'm(bo, Az) IJ  

[ o bo, zo)q 
x/'~'(b~' z°) [ . (16) 

k~,,(bo, zo)J 

Equation (16) gives a general relationship between 
all the elastic and inelastic waves before and after 
penetrating a crystal slice. The exponential matrix 
indicates the multiple scattering of the electrons 
among all these states. 
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In order to get some simplified results, we con- 
sider the first-order approximation of (16). Assuming 
In.ml I ..I and 1 for n # m, with o" = 1/by, 
then the exponential term of the matrix can be written 
as a summation of a diagonal matrix and a non- 
diagonal matrix: 

r/r : o 0 : ] 
• h~l .. 0 0 

exp{-i t r[ '"]}=expl- '°~[  iO ; .i. h,),,,, ' 

.!o 0 
- I ' -  . . . 

Lh'o html 0 J / J  o Ool ) 
x exp io- . . 

k kh'o h'l 

exp (-itrh'oo) -krh'o, . . .  -itrh'o,,, ] 
. . . .  J " 

L - i t rh 'o  -io'h~ 1 . . .  exp ( - i t rh ' , , )  

(17) 

If we put (17) into (16), we have 

r ff'°(b' z) ] 
• =[{~xp<-i°'hh)[~'(b'z°)-i.~Y'"~'h""~°"<b'z°)]}*P' I 

L ~o,,(b, z)/ L{exp (-io'h~m)[~o,,(b, Zo)-io" ~,~,~ h~o~(b, zo)]} * P,,,.] 

(18) 
where * denotes the convolution of the propagation 
function with respect to b. 

For the elastic scattered wave, q~o, the first term is 
the phase-grating result of the crystal slice, which is 
the elastic penetration of the incident elastic wave. 
The terms containing h6,, are the 'transitions' of the 
electrons from the excited states to the ground state. 
For the excited states, q~,,, the first term is the elastic 
scattering of the incident inelastic wave in the slice; 
the h %, terms are the transitions from the other states, 
including the ground state, to the nth state. This term 
can be considered as the generation of the inelastic 
wave when the electron penetrates through the slice. 
Also it is obvious that (18) reduces to the multislice 
formula (Cowley & Moodie, 1957) of elastic scatter- 
ing if all the inelastic transitions vanish, i.e. h',,  = 0 
for n # m. 

If one knows the elastic incident wave before the 
electron strikes the crystal surface, then all the gener- 
ated elastic and inelastic waves after the first slice 
can be calculated through (18). Then these waves can 
be taken as the incident waves for the second slice; 
the waves after penetrating the second slice can also 
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be calculated through (18). So all the waves after 
penetrating through the crystal can be obtained. 

3. Specia l  cases o f  only one excited state 

Let us consider the case of only one excited state. 
This case happens in most plasmon excitation and 
single-electron excitations. The crystal can be con- 
sidered as either in its excited state or in its ground 
state. In practice, this corresponds to the case of the 
energy-filtered inelastic images from the electrons 
after exciting a ptasmon loss or core-shell loss in 
electron microscopy. With m= 1, through some 
algebra, (16) reduces to the following forms: 

q~o(b, z ) =  {exp (-io'h~o)[COS (~lh;ol)~o(b, Zo) 

- / s i n  (olh~ol)(h6,/lh'o,l)~o,(b, Zo)]} • Po 

(19a) 
qh(b, z ) =  {exp (-io-h~,)[cos (~lh~ol)~,(b, Zo) 

- i sin (~lh~ol)(h~o/lh~ol),t,o(b, Zo)]} • P,. 

(19b) 

3.1. Case 1: energy-filtered inelastic image from a 
plasmon loss 

In (19), since cos (tr[h~o[)--- 1-( lh ol)2/2 -- 
expt-( lh ol)2/2] for ~[h' ,o[~l,  we can define an 
absorption function /x as given by (2On) and an 
electron inelastic mean free path A as given by (20b): 

~(b, Zo)=(olh~o[)2/Az, (20a) 

A(b, Zo) = 1//z. (20b) 

After neglecting the transition of the electron from 
its excited state to the ground state, we can write (19) 
as 

~o(b, z ) =  {exp (-icrh~oo) 

x[exp  (-txAz/2)q~o(b, Zo)]} * Po (21a) 

qh(b, z) = {exp (-io 'h ' , , )[exp (-tzAz/2)~o~(b, Zo) 

- icrh~oq~o(b, Zo)]} * P,. (21b) 

In (21a), the exp ( - / xAz /2 )  term describes the 
absorption effect of inelastic scattering. For plasmon 
excitations, h~ may be taken as a product of a com- 
plex constant with a real function, and also h6o~- h',l; 
then (21) can be written in the form of (22) after a 
proper choice of the constant phase factor of the wave 
function q~o: 

q~o(b,z)= {q(b)[exp(-txAz/2)~po(b, zo)]} * Po (22a) 

~Ol(b , z ) =  {q(b)[exp ( - / zAz /2 )~01 (b  , Zo) 

+ ( A z / A  )'/2 ~o(b, zo)]} * P,, (22b) 

where q(b) is defined as the slice transmission 
function, 

q(b) = exp (-ioh~o). (22c) 
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Equation (19) is the form of the theory proposed 
by Wang (1989a) for calculating energy-filtered 
inelastic images based on the semi-classical approach. 
In (22), the term containing/z indicates the absorp- 
tion of inelastic excitation. The term Az/A is the 
probability of generating the plasmon loss while the 
electron is traveling through the slice. This means 
that the electron energy loss is a mean process 
depending on its average traveling distance. This is 
the classical concept of electron energy loss, which 
is still valid in quantum mechanics under the first- 
order approximation (Ritchie & Howie, 1988). 
Equation (22) can also be applied for single-electron 
excitations. Since (22) was derived directly from 
quantum mechanics, this inversely proves the 
equivalence of the previous theory (Wang, 1989a) 
with quantum mechanics under some approximation. 
The detailed calculations of the energy-filtered inelas- 
tic images of plasmon losses have been given else- 
where (Wang, 1989a, b). 

3.2. Case 2: total elastic and inelastic scattering 

The elastic and inelastic scattered waves, in prin- 
ciple, should be treated incoherently. In practice, 
however, if the electron energy loss is small, the 
inelastic process can be localized in a wide range 
along the beam direction. Also, no large momentum 
transfer effect is introduced in the direction perpen- 
dicular to the beam. Then it is valid to assume that 
the inelastic process may take place anywhere and 
one can assume that it takes place after transmission 
through the crystal. Hence the amplitudes of all com- 
ponents may be added together inside the crystal. 
The effect of electron energy loss is to perturb the 
wavelength. This was the semi-classical approach 
proposed for including the plasmon diffuse scattering 
in dynamical calculations (Wang, 1989b; Wang & Lu, 
1988). The correspondence of this treatment could 
be derived from (19). If h'~o is a real function, then 
by adding the ~Oo and ~Ol, one gets 

[ ~po(b, z) + ~p,(b, z)] - (exp {-io-(h~0 + Ih',ol) 
x [~o(b, Zo)+ ~,(b, Zo)]}) * eo. 

(23) 

This equation shows that the total scattered wave can 
be calculated approximately by assuming a real cor- 
rection to the crystal potential. Actually this real 
correction, based on classical energy-loss theory, indi- 
cates the perturbation of electron energy loss to the 
wavelength depending on the scattering trajectory 
(Wang, 1989b). 

3.3. Single-electron core-shell excitations 

In electron diffraction, one inelastic process is the 
single-electron excitation, during which an electron 
is excited from one bound state to another state, such 

¢., 

as the transition of a l s electron to an ionization 
state, which is called the K-edge loss in electron 
energy-loss spectroscopy. Equation (21) can be 
applied to calculate the inelastic wave of single-elec- 
tron core-shell excitations. In this section, one uses 
the atomic tight-binding approximation for deriving 
the transition matrix of this process. 

The transition matrix of an inelastic transition from 
an initial ground state to the nth excited state can be 
written as (Howie, 1963) 

H ' o ( r , q ) = e x p ( - i q n o . r ) ~ H ~  ° e x p ( i g . r ) ,  (24) 
g 

where q is the wave vector of the excitation created 
in the lattice (e.g. exciton, phonon, plasmon etc.), g 
is the reciprocal-lattice vector. For single-electron 
excitation, it is possible to use the tight-binding 
approximation for calculating Hg m (Whelan, 1965a). 
Following the mathematical procedures given by 
Landau & Lifshitz (1977), one gets 

H~"=(47re2/ V)[f~m(g--q)/Ig--qJ2], (25a) 

where 

f,m(K)=(nJexp(-iK.r)Jm), (25b) 

and in) and Jm) are the normalized one-electron 
atomic wave functions. V is the volume of the atom. 
We consider the contributions of all the atoms in the 
unit cell located at Rj (j = 1, 2 , . . . ) ,  to the matrix 
element at position r, and make use of (24) and (25); 
then 

H'm(r, q) = (47re2/Vc) E • [ f~m(g- q ) / Jg-  ql 2 
g J 

x exp [ i ( g - q ) .  ( r -  Rj)], (26) 

where Vc is the volume of the unit cell. Equation (26) 
gives the transition matrix for exciting a single elec- 
tron from the mth state to the nth state with a momen- 
tum transfer q. 

The calculation of f~m in general involves compli- 
cated quantum theory. However, under some reason- 
able approximation, the element f~,, can be derived 
analytically based on the hydrogen-like model for 
some light elements (Bethe, 1933; Madison & 
Merzbacher, 1975), such as carbon and oxygen K- 
shell ionizations. 

4. Thermal diffuse scattering 

Unlike single-electron excitation, thermal diffuse 
scattering (TDS) involves a large amount of excited 
states of different momentum transfers but the transi- 
tion probability of each is very small. In this case, 
one neglects the inelastic transitions among all these 
excited states, and considers the fact that the TDS 
process does produce a large amount of momentum 
transfer but almost no energy loss; then (18) can be 
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simplified to 

~,o(b, z ) =  {exp (-io-h~o)[ ~oo(b, go) 

-io-~,,~0 h~,,q~,,(b, Zo)]} * P o, (27a) 

~,,,(b, z) = {exp (-io'h~o)[q~,,(b, Zo) 

- i o h ' o ~ , o ( b ,  Zo)]}  * Po .  (27b) 

Since all the excited states have the same energy level, 
then the inelastic waves ~,s (n = 1, 2 , . . . )  have the 
same time-dependent factor exp ( iEt /h) ,  and they 
can be considered approximately as coherent, 
because the different momentum transfer in TDS 
means that the electron is 'elastically' scattered off 
the beam direction. This may be similar to the electron 
elastic scattering off Bragg spots. By defining a total 
TDS wave q~ r as a coherent sum of all the TDS waves 
of different momentum transfers, 

7 "  = ~  q~,,, (28a) 
Pl 

and defining 

h~-=E h',,o, (28b) 
rl 

from (27b) one has 

~0 r (b, z) = {exp ( -  io-h~0)[ ~p r (b, z0) 

- io'h~r~P0(b, z0)]} * Po. (29) 

Now let us find the total generation function h~r 
of a TDS wave. Based on quantum-mechanical 
theory, Takagi (1958) has given a perturbation poten- 
tial of phonon scattering in a monoatomic crystal 
system, 

i Vc U ( r ) = -  ~ - ~ 5 I  j~. ('r-u~)V~ 

x exp [-M(~-)]  exp [ ix.  ( r -  Rj)] dx, (30a) 

where 

V~= V~ -1 ~ v(r) exp ( - i 7 .  r) dr, (30b) 

v(r) is the atomic potential and M is the Debye- 
Waller factor, 

M ( r )  = ½((x. us)2), (30c) 

where the sum over j is taken over all the atoms 
in the crystal. The angular brackets in (30c) denote 
the time average of the corresponding quantity. The 
Fourier coefficient of potential V, is related to the 
structure factor F(~') by 

h 2 47r r). (30d) 
V~ = 2mo ~ F( 

By expressing the lattice displacement u s in normal 
modes, Whelan (1965b) and Rez et al. (1977) have 

given a transition matrix for creating a phonon of 
frequencies to(q, t) and polarization unit vectors eq, t 
(where t =  1,2,3 denote the three perpendicular 
polarizations), 

H ' T = ( N ( t ) +  1 U(r) N(t ) )  

= E E E  n g  °exp [ / ( g - q ) . r ] ,  
g q t 

(31a) 

where 

Hg ° : - i (M, ,N)- l /2 (g  - q) .  eq., Vg_q 

x exp [ - M ( g -  q)] { hi N( t )  + 1 ]/2w (q, t)}1/2. 

(31b) 

N( t )  is the occupation number of the state IN(t)),  
Ma is the atomic mass and N is the total number of 
atoms in the crystal. For the first-order approxima- 
tion, one uses the Einstein model of assuming that 
each atom is vibrating independently with frequency 
to, and also that the polarization of the phonon is 
independent of q; then 

S ( t ) = [ e x p ( O E / T ) - l ]  -1, (31c) 

where Oe = hto/kB is the Einstein temperature, T is 
the crystal temperature and ks is the Boltzmann con- 
stant. Putting (31) into (24), one has 

n '7- = - iA[ Vc / (27r)3] ~ ~ ~ exp [ i(g - q) .  r] 
t q g 

x ( g - q ) t V g _ q e X p [ - M ( g - q ) ] ,  (32a) 

and 

A =  h(2kBO~MaN)-l/2{[exp ( ' tgE/T)-I]  -1 + 1} 1/2, 

(32b) 

where q is restricted to the first Brillouin zone. The 
sum over q in (32a) is on the two-dimensional array 
of states on the surface tr' for which energy and 
momentum are conserved (in practice the Ewald 
sphere). The calculation of (32a) is actually a function 
of incident-beam direction. 

In the first-order approximation, the radius of the 
Ewald sphere  can be taken as very large, so 
that the surface of the sphere is approximately a plane 
in the first Brillouin zone. If the incident beam direc- 
tion is chosen as the z axis, then the double sum of 

EEE 
q g x g y  

is actually an integration in the whole of reciprocal 
space, for ~" = (gx - qx, gr - qy) is parallel to the (x, y) 
plane. By selecting the three polarization directions 
as the (x, y, z) axes, then (32a) can be written as 

H'r~- -A[S~ /  (21r)2] ~ff-~x t ~ {exp [ i(rxx + ~'yy)] 

xexp  ( ig : )  I".(r~, ry, g~) exp ( - M ) }  drx dry 

(33a) 
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where Sc is the surface area of the unit cell. Using 
the inverse Fourier transform of V~ and through some 
algebra, one gets 

-~-~ { V'(r)}, H'T = - A  ~ Ox, (33b) 

where V' is the temperature-modulated crystal poten- 
tial. Integrate (33b) for z from z0 to z; then put the 
result into (29) and consider the perturbation result 
of the TDS on the crystal potential H'oo, e.g. adding 
a Debye-Waller factor in the crystal potential 
(Cowley, 1975). The relationship between the total 
TDS wave before and after penetrating a crystal slice 
may then be given by 

~,r(b, z ) = ( exp [ icrV'(b, Az ) ] { ~T (b, zo) 

+ itrA ~ V'(b, Az) ~0o(b, Zo) * Po, 
-7- 

(34a) 

where 
z 

V'(b, Az) = J V'(b, z) dz. (34b) 
7- 0 

For the elastic scattered wave, an absorption factor 
needs to be introduced in order to characterize the 
intensity decay. According to the absorption 
coefficient defined in (20b), one can approximately 
write (27a) as 

~oo(b,z)={exp[ioV'(b, Az)]~oo(b, zo)exp( -[cra  

]2/ )} 
x ~ V'(b, Az) 2Az * Po. (35) 

-'7 

Equations (34) and (35) outline the main scheme of 
calculating TDS waves in a monatomic system. The 
A coefficient depends on the total number of atoms 
in the crystal, which is the result of conservation of 
the total energy. In practical calculations A can be 
replaced by a displacement constant of the atom from 
its equilibrium lattice point:. For a complicated system 
consisting of several types of atoms, the term 

in (34) and (35) may be generalized as 

~ [~x, j~  Ajv~(r- RJ)],  (36) 

where v~(r-Rj)  is the atomic potential of atom j 
located at Rj, including thermal effect, Aj is the con- 
stant of A defined in (32b) for the j th atom with 
Einstein temperature OE,, which actually describes 
the displacement of the atoms from its equilibrium 
position depending on temperature. 

As shown by Cowley (1988) based on the physical- 
optics approach, TDS can be considered as a time- 
dependent perturbation in multislice calculation; 
then the first-order expansion of the slice transmission 
function, exp (io'V), for a small perturbation of AV 
due to atomic movement, will be the generation func- 
tion of the TDS wave in the slice, which is propor- 
tional to the first-order differentiation of the potential 
V. His result is equivalent to (34). 

5. Discussion and concluding remarks 

The derivation of (18) was based on the following 
approximations: ( 1 ) small-angle scattering, i.e. a 2 < 1; 
(2) small slice thickness, so that the variation of H'm 
in the region (Z-Zo) is slow; and (3) small energy 
loss, e , '~Eo.  Conditions (1) and (3) are usually 
satisfied in high-energy electron diffraction. Condi- 
tion (2) gives a restriction on the selection of the slice 
thickness. This situation is similar to the slice-thick- 
ness selection in simulating high-resolution electron 
images. Good accuracy can be obtained by selecting 
slice thickness up to a few Angstrrms. Besides the 
above conditions, the crystal thickness is also limited. 
This is because the error arising from the calculation 
of the first slice will 'propagate' to the later slices, so 
that the final error is an accumulation of all errors 
arising from each slice. According to Ishizuka & 
Uyeda (1977), the slice thickness Z is restricted by 
kZot4< 1. This condition is often satisfied. The multi- 
slice method, in principle, neglects the back scattering 
of the electrons, which is usually very weak, especially 
for high-energy electrons. 

The derivation of (18) assumed that the incident 
electron beam direction is along the z axis. For non- 
parallel incidence, (18) is also valid apart from the 
replacement of o- with or = (k/kz)o and propagation 
function P by P ' =  (kz/k)P (Ishizuka, 1982). 

The derivation of (18) does not assume the three- 
dimensional periodicity of the crystal structure. This 
gives the possibility of introducing crystal defects in 
calculations. It is feasible, in principle, that multiple- 
scattering effects can be included in the calculations. 
The multislice method can be applied not only for 
calculating the transmission electron diffraction 
but also for the reflection electron diffraction in 
the geometry of glancing-angle incidence (Wang, 
1989a, b). 

We have thus given a general multislice solution 
of Yoshioka's coupling equations, which is capable 
of including the effects of non-periodic crystal struc- 
tures and inelastic transitions among all the excited 
states in the calculations. The waves going into a 
crystal slice and those coming out of the slice are 
connected by an exponential form of the transition 
matrix; the different-order expansion of this matrix 
gives different orders of transitions. This general 
theory reduces to a simplified form if only one excited 
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state is involved. This form is identical to the theory 
proposed earlier (Wang, 1989a) for calculating 
energy-filtered inelastic images. In other words, we 
have established the equivalence of the early theory 
(Wang, 1989a) with quantum mechanics. It is proved 
that the generation of the inelastic wave can be con- 
sidered as a mean excitation process, the probability 
of which is Az/A within a slice. This may indicate 
that the inelastic scattering of low energy loss is 
localized over a large range. 

The multislice scheme of simulating the energy- 
filtered single electron excitation (K shells or L shells) 
and the total thermal diffuse scattering waves have 
been outlined. The theory reduces to the results of 
the physical-optics approach under some approxima- 
tions. It is expected that these theories should provide 
an easier and accurate way of calculating inelastic 
scattering of high-energy electron diffraction in the 
geometries of both transmission and reflection elec- 
tron microscopy. Detailed calculation results will be 
reported in a separate paper. 

The author is grateful to Professor J. M. Cowley 
and the referees for useful discussions and comments. 
His thanks are due to the Master and Fellows of 
Emmanuel College, Cambridge, for the award of a 
Research Fellowship. The initial encouragement of 
Dr P. Rez is also acknowledged. 

APPENDIX A 

Derivation of equation (6) from equation (5) 

Let us first consider the nth inelastic component. By 
defining U as 

U,(r) = ~  (2mo/h2)n',,(r)~m(r), (A.1) 
m 

then we can write (4a) as 

(V2+ k2,) a/r,(r) = U,(r). (A.2) 

The solution of (A.2) can be found through the Green- 
function method, 

G(r-r ' , k , )=-exp[ i (k ,  r - r ' l ) ] / ( 4 7 r l r - r ' )  (A.3) 

which satisfies 

(V2+ k2) G ( r -  r', k , )  = 8 ( r -  r'). (A.4) 

Then the solution of (A.2) can be written as 

~.(r) = exp [ i k , .  r] 

+~ G ( r -  r', k , )  U,(r') dr'. (A.5) 

Replacing 1/' by ¢ exp ( i k , .  r) and using (A.1), we 
find that (A.5) becomes 

~,(r)  = 1 - E  (2mo/4zrh 2) 
m 

×~ F ( r - r ' ,  k , )H 'm(r ' )¢ ,~( r ' )dr ' ,  (A.6) 

with 
F ( r -  r', k , )  =exp  {i[k, r - r '  - k , .  ( r - r ' ) ] }  

r -- r'[ 
(A.7) 

Equation (A.6) is the nth row of equation (6a). 

APPENDIX B 
Proof of equation (14) 

Equation (14) is proved using the method of mathe- 
matical induction. First let us consider the solution 
for L =  1. From (13), 

z ' = z  

: ) - -  P , ( b - V ,  z -  z') 
z'= z 0 

x ~, S~m(b', z')~m(bo, Zo) 
m 

XPm(b'-bo, z'-zo) dbodb'dz'. (B.1) 

By using the method of stationary phase for the 
integration of the propagation function P (Ishizuka 
& Uyeda, 1977), i.e. for a slow variation function V 
in the region (z-Zo),  one has 

I V(b' ,z ' )P,(b-b' ,z-z ' )P,(b'-bo,  z'-zo) db' 

= V(bo, z ' ) P , ( b - b o ,  Z-Zo). (8.2) 

If we integrate over b' and assume the slow variation 
of H 'm in the region ( z -  Zo) as well as k, = kin, (B.1) 
becomes 

f[")(b,  z) = I P , ( b -  bo, z -  Zo) 

×Y~h'm(bo, Ziz)~m(bo, zo) dbo. (8.3) 
m 

It is obvious that (B.3) is the second row of equation 
(14). If f [  ") satisfies (14), then f~+)~ will be obtained 
from equation (13). 

°' ] i  I 
[fL+,(b, z) ~'=z 

fL+Z} Z) db' dz' b, (1) = 

t in) z'=zo 
El, +,(b, z) 

0 P l ( b - b ' , z - z ' )  ' ' '  0 
X . . . .  

0 0 ' ' '  P , , ( b - b ' , z - z ' )  

1" H~,o(b', z') H~,(b', z') ... H~,,(b', z')-I 

x d ,  

L H'~o(b', z') H~n,(b', z') H~,,.(b', z')_J 

0 Pt (b ' -bo ,  z ' -zo)  . . .  0 
X . . . .  

0 0 . . .  P , , ( b ' - b o ,  z ' - z o )  

- t hoo(bo, Z') h;m(bo, z')qLF o(bo, Zo)'l 
X . . , . 

.h 'o(bo,  Az') h '~(bo, Az') h 'm(bo, Az')J [~'m(bo, Zo)-[ 

(8.4) 
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where Az'= z ' - z 0 .  Multiplying out the first three 
matrices in (B.4), and integrating with respect to b' 
using (B.2), we find that (B.4) becomes 

I~(b ,  z) 1 
• = L.V dbo dz' 

Po(b- bo, z - Zo) 0 ... 0 1 

,l 
0 Pl(b-bo,  z-zo)  . . .  0 

x . . . .  

0 0 ... P,.(b-bo, z-z o 

F H~o(bo, z') H~t(bo, z ' ) . . .  H~,,(bo, z') 
/ H'Io(bo, z') H'it(bo, z') H'l,.(bo, z') 

H'o( o, z') H'l(bo, z') H'~(bo, z') 

hoo(bo, Az') ho,(bo, Az ' ) h'o.,(bo, Az')lL[,po(bo. zo)" ] 
h',o(bo, Az') h',t(bo, Az') h',m(bo, Az') ~Pt(b.o, Zo) 

x . . . .  

.h 'o(bo,  Az') h',,,,(bo, Az') h'm~(bo,az')J L~.,(bo. zo)d 

(B.5)  

N o t e  t h a t  h ~ m ~ - H ' , , m ( z ' - z o )  for  Az ' -~O;  t h e n ,  
i n t e g r a t i n g  by  par t s  in  (B .5)  fo r  z' ,  o n e  o b t a i n s  

If k°+)I (b, z) I 
f ~'+), }b, z'/ 
f[+~(b, z).l 

= 1 f dbo 
(L+I)! O 

-Po(b- bo, Az) 0 ... 0 1 

J 
0 P1(b-bo, AZ) ... 0 

. . . .  

0 0 ... P,,(b-bo, Az) 

"h~o(bo, Az) ho,(bo, Az) . . .  ho,¢bo,~Z,]  ~¢o(bo, zo)] 
h'lo(bo, Az) h'll(bo, Az) h'lm(bo, Az) ¢l(bo, Zo) 

x . . . . .  

.h 'o(bo,  Az) h ' l (bo,  Az) h',,,,~tbo, Az)J L¢,,,fbo, Zo)J 

(B.6) 

It is n e c e s s a r y  to  p o i n t  ou t  t ha t  t he  resu l t  in  (B.6)  is 
o n l y  va l i d  fo r  Az very  smal l .  W i t h  (B.3) a n d  (B.6)  
the  m a t h e m a t i c a l  i n d u c t i o n  is c o m p l e t e d .  
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